Improved *in vitro* and *in vivo* performance of carbamazepine enabled by using a succinic acid cocrystal in a stable suspension formulation

Majeed Ullah¹, Mohammad Raza Shah³, Muhammad Hassham Hassan Bin Asad², SM Farid Hasan⁴ and Izhar Hussain²

¹Department of Pharmacy, Kohat University of Science and Technology, Kohat, Pakistan,

Abstract: Currently cocrystals are considered as an established approach for making crystalline solids with overall improved physico-chemical properties. However, some otherwise well behaving cocrystals undergo rapid dissociation during dissolution, with ultimate conversion to parent drug and thus apparent loss of improved solubility. The polymeric carriers are long known to manipulate this conversion during dissolution to parent crystalline drug, which may hinder or accelerate the dissolution process if used in a dosage form. The goal of this study was to deliver *in vivo* a more soluble carbamazepine-succinic acid (CBZ-SUC) cocrystal in suspension formulation utilizing Hydroxypropyl methyl cellulose (HPMC-AS) as a crystallization inhibitor and Polyvinyl carpolactam-polyvinyl acetate-polyethylene glycol graft copolymer[®] as solubilizer. The concentration of these polymers were systemically varied during *in vitro* dissolution studies, while selected formulations from dissolution studies were tested *in vivo*. Pharmacokinetic studies (PK) in rabbits demonstrated that formulation F_7 -X (1% cocrystal, 1% HPMC-AS and 2% Polyvinyl carpolactam-polyvinyl acetate-polyethylene glycol graft co-polymer[®]) caused almost 6fold improvement in AUC₀₋₇₂ (***P \Re 0.05) as well as much higher C_{max} of 4.73µg.mL⁻¹ to that of 1.07µg.mL⁻¹ of unformulated 'neat' cocrystal given orally. When reference formulation of CBZ (F_5 -X) with similar composition to F_7 -X were given to rabbits, cocrystal formulation gave 1.37fold (***P \Re 0.05) bioavailability than CBZ reference formulation. C_{max} of reference formulation observed was 3.9µg.mL⁻¹.

Keywords: Cocrystal, suspension, bioavailability, carbamazepine, crystallization inhibitor.

INTRODUCTION

Cocrystallization is a valuable crystal engineering approach for modifying pharmaceutical performance by managing API (s) overall solid state properties (Sun, 2013). In general literature survey ratifies improved bioavailability of APIs by cocrystallization (Cheney *et al.*, 2009, McNamara *et al.*, 2006, Variankaval *et al.*, 2006). This trend is likely determined by the common plea to enhance the poorly soluble compound (s) bioavailability, accordingly cocrystals exhibiting higher solubility and rapid dissolution are investigated for bioavailability enhancement (Alhalaweh *et al.*, 2012, Alhalaweh *et al.*, 2013, Sun, 2013).

Among other utilities, the cocrystals have been used to increase poorly soluble drug (s) solubility and bioavailability. Studies involving cocrystal bioavailability (Bak *et al.*, 2008; Cheney *et al.*, 2009; Hickey *et al.*, 2007; Jung *et al.*, 2010; Smith *et al.*, 2011; Stanton and Bak, 2008; Venczel *et al.*, 2012; Weyna *et al.*, 2012; Zheng *et al.*, 2012) animal models involving dogs or rats have been commonly used. Cocrystals were either given in liquid suspensions with or without added polymers (mostly in rats), or as cocrystal powder with or without **Corresponding author: e-mail: smfhassan@uok.edu.pk

additives in capsules (mostly in beagle dogs). These reported studies have clearly demonstrated cocrystals capability of enhancing bioavailability in contrast to poorly soluble API single-component crystal form.

In literature the prevailing method for cocrystals in vivo performance is focused on purposely excluding additional formulations so as to relate the "unformulated" cocrystals ag. suspension or filling into capsules 'neat' cocrystal (Childs et al., 2013). As reported in two different studies cocrystals of carbamazepine-saccharine (CBZ-SAC) and indomethacine-saccharine (IND-SAC) gave almost 10 and 67fold higher solubility than pure APIs at pH 3, but there in vivo performance when given orally in capsule shells resulted in bioavailability comparable to marketed products in tablet forms (Hickey et al., 2007; Jung et al., 2010). Conversely, in a some cases designing appropriate formulation strategy becomes indispensable with the aim of interpreting improved cocrystal solubility into a therapeutically significant bioavailability improvement as demonstrated by Childs et al., where enabling formulation of vanillin cocrystal markedly improved its bioavailability (Childs et al., 2013).

For poorly soluble APIs, solubility enhancement is highly desired to ensure their successful development. The

²Department of Pharmacy, COMSATS Institute of Information Technology, Abbottabad, Pakistan

³H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences University of Karachi, Karachi, Pakistan

⁴Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, Pakistan

solubility enhancement increases the drug dissolution rate, which is considered a vital phase in any drug (s) absorption. The use of highly soluble solid form, however, suffers the problem of 'solution mediated phase transformation' (SMPT), where stable solid phase crystallizes upon the dissolution of a more soluble solid form. The occurrence of SMPT negates dissolution rate advantage of soluble forms (Greco and Bogner, 2012). The SMPT is assisted by liquid contact and proceeds in three steps: (i) metastable form dissolution to generate super-saturation (ii) stable form nucleation and (iii) stable form growth. Thus, slowing down or even eliminating one or both of the last two steps in the SMPT process is required to maintain a high dissolution. This can usually be achieved by using polymeric crystallization inhibitors (Raghavan et al., 2003; Wang et al., 2016).

Carbamezepine (CBZ) is categorised in BCS Class II drug (s), having high intestinal permeability and low water solubility. Its absorption is, therefore, dissolution rate limited. There are reported four anhydrous polymorphs of CBZ and a dihydrate (stable form) in aqueous solution. Different commercial brands of CBZ tablets have a history of bioavailability non-equivalence and clinical failure, which has been attributed to polymorphism (Kobayashi et al., 2000; Meyer et al., 1998). This is a problem to therapy because CBZ has a narrow therapeutic index, for which a reproducible dissolution rate are indispensable for achieving the desired therapeutic effect while minimizing the risk of toxicity. We recently showed that the use of a soluble cocrystal of CBZ is an attractive approach for addressing this challenge in CBZ delivery using stable tablet formulations (Ullah et al., 2015a). In this report, we describe the in vivo performance of otherwise highly unstable CBZ-SUC cocrystal in aqueous environment with stable suspension formulations containing crystallization inhibitor (HPMC-AS) with appropriate CBZ solubilizer (Polyvinyl carpolactampolyvinyl acetate-polyethylene glycol graft co-polymer[®]).

MATERIALS AND METHODS

Materials

HPLC grade Methanol and Acetonitrile were purchased from, VWR International Ltd (Leicestershire, England). Polyvinyl carpolactam-polyvinyl acetate-polyethylene glycol graft co-polymer® were obtained from BASF (Geismar, Germany). HPMC-AS (HF) was obtained from *Shin-Etsu* Chemical Co., Ltd. (Chiyoda, Tokyo, Japan). Carbamazepine was obtained from Sigma Aldrich (St. Louis, MO, USA). Deionized water (double distilled) was used throughout the study.

The preparation of CBZ-SUC 2:1 cocrystal were detailed before (ullah *et al.* 2015b). In brief 4.725g (1.99mM) of CBZ and 1.181g (1mM) of SUC were mixed by hand in a mortar for 30 min with constant dilution of methanol.

METHODS

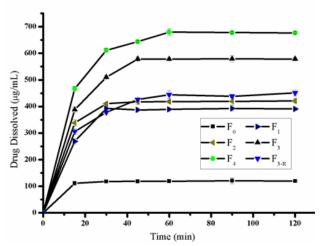
Optimization of suspension formulations for cocrystal based on in vitro studies

Dissolution experiments (non-sink) were used at ambient conditions with in situ Raman spectroscopy to monitor phase change during dissolution experiments to select suitable crystallization inhibitor. Out of three polymers studies HPMC-AS delayed/inhibited the phase conversion of CBZ-SUC for course of time studied (Ullah et al. 2017 submitted). In brief impact of three polymers at varying conc on phase stability of cocrystal (CC) were tested in buffer with online monitoring by raman spectroscopy followed by confirmation by off-line methods like FT-IR and PXRD. PVP K-30 & K-90 were unable to kinetically stabilize the CC while HPMC-AS stabilized the CC at 0.025% w/v for the course of time studied. While selection of suitable CBZ solubilizer was based on literature as well as our IDR studies (Ali et al. 2010, Ullah et al. 2015a). For selecting suitable formulations for in vivo studies based on non-sink dissolution experiments, in vitro dissolution experiments were executed on heat controllable magnetic stirrer in simulated intestinal fluid (without enzymes), where conc of selected polymers were varied systemically. For all experiments temperature used was 37±1 °C with stirring rate of 100rpm. The volume used was 100mL, suitable conc of CC was added to SIF. Around 3mL of Aliquots were taken at stated time points, filtered and quantified by UV-Vis spectrophotometer after appropriate dilutions.

In vivo pharmacokinetic studies

Albino rabbits (1.9-2kg each) were used for PK studies. These studies were carried out according to protocols approved by Pharmacy department research ethical committee at CIIT Abbottabad {ref. no PHM-0023/E, (C/M--4)}. These studies were completed in accordance with Helsinki declaration and Animal scientific procedure act 1986 (UK). PK data for individual formulation was collected in N=4 rabbits. Before dosing rabbits were kept on fasting for 12h with free water excess and 1 week washout period was provided. Post dose blood samples taken specified time at points 0,1,2,3,4,6,8,10,12,24,48 and 72h and were initially centrifuged at 3500rpm for 5 min, 200µL of supernatant taken in eppendroft tube was kept at -20 °C for further studies. Drug was extracted with acetonitrile (1:1) vortex mixed for about 90 seconds and centrifuged again at 12000rpm for 10 min (Ullah et al. 2015a).

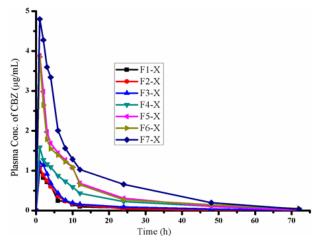
STATISTICAL ANALYSIS

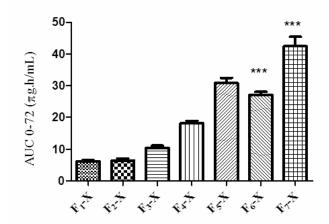

CBZ plasma concentration at various time points were calculated for individual rabbit and mean \pm SD values were calculated. From plasma concentration-time profiles of individual samples, their peak plasma concentration (C_{max}) and their occurrence time (t_{max}) were read directly

while area under the curve (AUC₀₋₇₂) was estimated by linear trapezoidal rule. AUC differences in rabbit groups were considered significant at a 'p' value below 0.05 and at 95% confidence interval by applying one way analysis of variance (ANOVA) followed by Tukey's multiple comparison test by using GraphPadPrism5.

RESULTS

Optimization of suspension formulations for cocrystal based on in vitro studies


Suspensions final formulations for *in vivo* studies were optimized by varying the selected polymers (HPMC-AS & Polyvinyl carpolactam-polyvinyl acetate-polyethylene glycol graft co-polymer®) concentration during in vitro studies i.e. In F₁ formulation 0.5% w/v & in F₂ 1% w/v HPMC-AS was used, addition of cocrystal to these suspensions improved CBZ conc 3.1 fold and 3.4 fold respectively than CBZ dihydrate owing to the polymer strong crystallization inhibition effect. Therefore 1% w/v HPMC-AS concentration was finalized for final formulation as at 2% w/v HPMC-AS conc didn't further improve the CBZ conc. As shown in fig. 1, the CBZ concentration was directly proportional to added Polyvinyl carpolactam-polyvinyl acetate-polyethylene glycol graft co-polymer[®] concentration when used as solubilizer e.g. 1% w/v Polyvinyl carpolactam-polyvinyl acetate-polyethylene glycol graft co-polymer® addition to kinetically stable F2 formulation resulted in 4.6fold (F3) CBZ conc increase than unformulated CBZ-SUC (F₀). This was considerable increase in CBZ concentration in vitro caused by kinetic stability of highly soluble cocrystal by crystallization inhibitor polymer aided by appropriate CBZ solubilizer.


Fig. 1: *In vitro* performance of pure CBZ, cocrystal (F_0) & all experimental suspensions (F_1 - F_4), while F_3 -R is the CBZ reference formulation of F_3

Further addition of Polyvinyl carpolactam-polyvinyl acetate-polyethylene glycol graft co-polymer® (2% w/v)

in formulation F_4 , 5.6fold improvement in solubility of CBZ was observed. Adding more cocrystal to formulation F_3 & F_4 didn't increase CBZ apparent solubility. Thus cocrystal, HPMC-AS 1% w/v and Polyvinyl carpolactampolyvinyl acetate-polyethylene glycol graft co-polymer® (both at 1% w/v and 2% w/v) were chosen as final optimized suspension formulations for *in vivo* studies in rabbit models. This suspension (F_4) was sufficiently viscous so influence of further solubilizer was not observed.

Fig. 2: AUC₀₋₇₂ of CBZ (F_1 -X), CC (F_2 -X) & all experimental formulations (F_3 -X, F_4 -X, F_5 -X, F_6 -X, F_7 -X) (N=4).

Fig. 3: AUC₀₋₇₂ of all formulations in rabbits N=4. Values are expressed as mean \pm SEM (P $\Re 0.05$; ANOVA,followed by Tukey's post hoc test)

For comparison, suspension of pure CBZ were also prepared having similar composition to F_3 & F_4 coded as F_3 -R & F_4 -R as shown in fig. 1. Reference formulation F_3 -R was 3.5fold more soluble than stable CBZ dihydrate at supersaturated state. This was also significant increase in CBZ conc as a result of CBZ polymorph III supersaturated state, caused by the combination of polymers. Literature studies also ratifies that CBZ (form

Formulation	Composition (%)						
	CBZ (reference)	CBZ-SUC (cocrystal)	HPMC-AS (crystallization inhibitor)	Polyvinyl carpolactam- polyvinyl acetate- polyethylene glycol graft co-polymer [®] (solubilizer)			
F ₁ -X	1	-	-	-			
F ₂ -X	-	1.25*	-	-			
F ₃ -X		1.25*	1	-			
F ₄ -X	1	-	1	1			
F ₅ -X	1	-	1	2			
F ₆ -X	-	1.25*	1	1			
F ₇ -X	-	1.25*	1	2			

Table 1: Composition of suspension formulations for *in vivo* studies in N=4 rabbits

Table 2: All PK parameters of CBZ (F_1 -X), CC (F_2 -X) and all experimental suspension formulations (F_3 -X- F_7 -X) in albino rabbits N=4, calculated after single CBZ dose (35 mg.kg⁻¹)

Parameter	F ₁ -X	F ₂ -X	F ₃ -X	F ₄ -X	F ₅ -X	F ₆ -X	F ₇ -X
$\begin{array}{c} AUC_{0\rightarrow72} \\ (\mu g.h.mL^{-1}) \end{array}$	6.19±0 .7	6.38±1.5	10.45±1.4	18.13±1.6	30.9±3.1	27.3±2	42.4±6
$C_{max}(\mu g.mL^{-1})$	1.01±0.18	1.07±0.18	1.43±0.26	1.6±0.15	3.9±0.14	3.9±0.3	4.7±0.42
$T_{max}(h)$	1.1±0.6	1±0.48	3±0.57	0.5±0.43	0.45±0.65	0.45±0.38	0.40±0.5

III) is 2.92fold soluble than its dehydrate in aq. environment (Murphy *et al.*, 2002).

Composition of suspension formulations for in vivo studies

The codes and composition of selected formulation for animal dosing are given in table 1. Uniform suspensions were formulated in mortar and pestle. Initially 1% w/v HPMC-AS was added to phosphate buffer (pH 6.8) and was mixed thoroughly for 5 min, followed by addition of 1% w/v Polyvinyl carpolactam-polyvinyl acetatepolyethylene glycol graft co-polymer® in formulations F₄-X & F₆-X and 2% w/v Polyvinyl carpolactampolyvinyl acetate-polyethylene glycol graft co-polymer[®] in formulations F_5 -X & F_7 -X respectively with continuous mixing. Finally the cocrystal (1% w/v) was added to this blended suspension and mixed for 10 min to obtain uniform suspension. The suspensions of formulations F₅-X & F₇-X though viscous but still were pourable. Suitable volume of each suspension was given orally to rabbits based on maximum CBZ dose permissible per kg body wt i.e. 35mg.kg⁻¹. As shown in table 1, F₄-X & F₅-X are CBZ reference formulations of cocrystals F₆₋X & F₇₋X.

In vivo pK studies

The freshly prepared suspension formulations were orally given to rabbits based on rabbit weight (6.5-7mL). As shown in table 2, AUC_{0-72} of F_1 -X (drug) & F_2 -X (cocrystal) was found to be equal. In F_3 -X, AUC_{0-72} improvement was although notifiable but still trivial, indicating HPMC-AS alone wasn't capable of enhancing drug absorption adequately. As given in fig. 2 & table 2,

cocrystal formulations F_6 -X & F_7 -X caused substantial $AUC_{0.72}$ improvements than unformulated F_2 -X where C_{max} was improved significantly from $1.07\mu g.mL^{-1}$ to $3.9\mu g.mL^{-1}$ & $4.73\mu g.mL^{-1}$ respectively. When cocrystal reference i.e. F_4 -X & F_5 -X formulations were given, cocrystal formulations displayed 1.5fold & 1.37fold AUC enhancement. While observed C_{max} for F_7 -X was $4.7\mu g.mL^{-1}$ compared to $3.9\mu g.mL^{-1}$ of reference F_5 -X formulation.

As shown in table 2, AUC₀₋₇₂ of F₁-X & F₂-X was comparable and no statistically significant difference was observed by applying one way ANOVA followed by Tukey's multiple comparison test $(P\mathcal{R}0.05)$, this was attributable to immediate dihydrate crystallization due to higher SUC solubility (higher differential solubility of the components) in buffer solution. These results indicated that when highly soluble but extremely unstable CBZ-SUC cocrystal was added to buffer solution, the cocrystal reverted back to its pure components and the ag. environment encouraged the CBZ quick conversion to the lowest soluble but stable dihydrate form. In F₃₋X formulation, AUC₀₋₇₂ difference is still insignificant; indicating crystallization inhibitor alone is not capable to enhance drug absorption. As shown in fig.3, F₆-X formulation caused significant increase in AUC₀₋₇₂ (***P90.05) than F₂-X, so addition of 1% w/v solubilizer to F₃-X formulation caused 4.3 fold increase in bioavailability of CBZ to that of pure cocrystal, while increasing the concentration to 2% w/v the increase in bioavailability was 6.64fold in AUC₀₋₇₂, and C_{max} was

^{*} Equivalent to 1% CBZ (10 mg.mL⁻¹)

increased from $1.07\mu g.mL^{-1}$ to $4.73\mu g.mL^{-1}$. When reference formulations were given having similar composition to F_6 -X and F_7 -X, $AUC_{0.72}$ of cocrystal formulation exhibited 1.5 fold (** $P\mathcal{P}0.05$) and 1.37 fold (** $P\mathcal{P}0.05$) bioavailability respectively. C_{max} of F_7 -X cocrystal formulation was $4.7\mu g.mL^{-1}$ as compared to $3.9\mu g.mL^{-1}$ of reference formulation.

For all formulations maximum drug concentration (T_{max}) were seen in the first 2h post dose, apart from F_3 -X, where T_{max} was delayed till 3h. It was also noted that T_{max} had a direct relation with Polyvinyl carpolactam-polyvinyl acetate-polyethylene glycol graft co-polymer® concentration in the formulation In F_7 -X T_{max} was at 0.4h in contrast to 1h of F_2 -X (cocrystal) owing to high Polyvinyl carpolactam-polyvinyl acetate-polyethylene glycol graft co-polymer® concentration in the formulation. Also, in F_5 -X, T_{max} fell to 0.45h in contrast to 1.1h of F_1 -X.

DISCUSSION

All solid state characterization techniques (XRD, FTIR, raman spectrocscopy) and thermal technique (TGA) confirmed cocrystal formation in accordance with all published reference data detailed in our published paper (Ullah *et al.*, 2015a). Up till now over 50 CBZ crystal form (s) have been stated and *in vivo* studies of only one CBZ cocrystal (CBZ-SAC) has been detailed so far, where cocrystal in powder form was given orally to beagle dogs in capsule shells, that gave comparable bioavailability to the marketed tablets, hence the cocrystal didn't address the bioavailability concerns of CBZ despite 10fold increase in solubility *in vitro* (Childs *et al.*, 2009).

Cocrystal in vitro studies confirmed CBZ solubility enhancement by using combination of crystallization inhibitor polymer together with suitable solubilizer in a suspension formulation. Childs et al., in their landmark study have reported that only crystallization inhibitor polymer was unable to enhance danazol cocrystals bioavailability lest suitable solubilizer was not added in enabling formulation (Childs et al., 2013). Alshahrani et al. have reported similar results where HPMC-AS and Polyvinyl carpolactam-polyvinyl acetate-polyethylene glycol graft co-polymer® blends considerably increased CBZ loading and its release rate in ASD than Polyvinyl carpolactam-polyvinyl acetate-polyethylene glycol graft co-polymer® alone. Similarly, Poloxamer/407 incorporation in CBZ-Polyvinyl carpolactam-polyvinyl acetate-polyethylene glycol graft co-polymer® dispersion not simply assisted in its extrusion process but also increased CBZ polymer loading and miscibility and thus enhanced dissolution performance (Djuris et al., 2014). The results of in vivo studies suggested that with Polyvinyl carpolactam-polyvinyl acetate-polyethylene glycol graft co-polymer® addition to kinetically stable

HPMC-AS formulation (F₃), CBZ thermodynamic solubility was actually increased, that caused improvements both *in vitro* as well as *in vivo* performance of F₆-X & F₇-X suspension formulations. These findings were very prominent in terms of CBZ absorption in rabbits. This study illustrated that cocrystals demand efficient formulation strategies, if fails to translate the *in vitro* solubility improvements *in vivo* possibly due to 'abrupt' phase change of unstable cocrystal systems due to differential solubilities of individual cocrystal components in aqueous environment.

Similar *in vivo* conclusions have recently been drawn, where CBZ supersaturatable-SMEDDS relative bioavailability was improved 5fold in beagle dogs in contrast to commercial tablets. This bioavailibility improvement was attributed to the crystallization inhibitor (PVP) incorporation to otherwise unstable SMEDDS that efficiently upheld the super-saturated state by impeding precipitation kinetics (Zhang *et al.*, 2011).

Inter subject differences for CBZ were seen to be very prominent in rabbits, as CBZ Log P value is above 2 and drugs having log P value 2 or above, display unpredictable absorption as well as extremely inconsistent bioavailability due to their dissolution rate-limited profile and is usually affected by the fed/fasted states of the patient (Gaikwad *et al.*, 2014). No IVIVC was made for developed formulations because of marked variations in the sampling time.

CONCLUSION

CBZ-SUC is a highly soluble but extremely unstable cocrystal in aqueous environment. This solubility advantage has not been fully utilized in formulation approaches owing to the cocrystal rapid conversion to the crystallized drug constituents because of the high supersaturation level attained by the cocrystal than the drug. This study demonstrated that drug super-saturation state may be sustained with appropriate formulation strategy where polymers can provide kinetic stability to cocrystal for course of time for absorption to take place and thus improved bioavailability. In adopted formulation approach the use of crystallization inhibitor polymer (HPMC-AS) together with suitable solubilizer (Polyvinyl carpolactam-polyvinyl acetate-polyethylene glycol graft co-polymer[®]) served as a useful approach for improving in vivo bioavailability of highly soluble but unstable CBZ-SUC cocrystal. One of the formulation that contained 1% w/v HPMC-AS and 2% w/v Polyvinyl carpolactampolyvinyl acetate-polyethylene glycol graft co-polymer® outperform the unformulated pure cocrystal given in solution as well as the formulation that contained only 1% w/v of HPMC-AS as crystallization inhibitor. Therefore the choice of suitable excipients at appropriate concentrations is critical for successful formulation performance of a cocrystal.

ACKNOWLEDGEMENTS

M.U is thankful to HEC Pakistan for indigenous scholarship and funding for carrying his PhD studies.

REFERENCES

- Alhalaweh A (2012). Pharmaceutical cocrystals formation mechanisms, solubility behavior and solid-state properties. PhD thesis, Lulea university of Technology, Sweden.
- Alhalaweh A, Ali HRH and Velaga SP (2013). Effects of polymer and surfactant on the dissolution and transformation profiles of cocrystals in aqueous media. *Cryst. Growth. Des.*, **14**: 643-648.
- Ali S, Lan Y, Langley N and Klueva O (2010). Investigating Dispersibility of Carbamazepine in Solid Solution by Raman Chemical Imaging Technique, Proceedings of the FIP Pharmaceutical Sciences 2010 World Congress and AAPS Annual Meeting and Exposition, New Orleans, USA.
- Bak A, Gore A, Yanez E, Stanton M, Tufekcic S, Syed R, Akrami A, Rose M, Surapaneni S and Bostick T (2008). The co-crystal approach to improve the exposure of a water-insoluble compound: AMG 517 sorbic acid co-crystal characterization and pharmacokinetics. *J. Pharm. Sci.*, **97**: 3942-3956.
- Cheney ML, Shan N, Healey ER, Hanna M, Wojtas L, Zaworotko MJ, Sava V, Song S and Sanchez-Ramos JR (2009). Effects of crystal form on solubility and pharmacokinetics: a crystal engineering case study of lamotrigine. Cryst. Growth Des., **10**: 394-405.
- Childs SL, Wood PA, Rodríguez-Hornedo NR., Reddy LS and Hardcastle KI (2009). Analysis of 50 crystal structures containing carbamazepine using the materials module of mercury CSD. *Cryst. Growth Des.*, **9**(4): 1869-1888.
- Childs SL, Kandi P and Lingireddy SR (2013). Formulation of a danazol cocrystal with controlled supersaturation plays an essential role in improving bioavailability. *Mol. Pharm.*, **10**: 3112-3127.
- Djuris J, Ioannis N, Ibric S, Djuric Z and Kachrimanis K (2014). Effect of composition in the development of carbamazepine hot-melt extruded solid dispersions by application of mixture experimental design. *J. Pharm. Pharmacol.*, **66**: 232-243.
- Gaikwad SS, Mhalaskar RS, Mahale YD and Jain NP (2014). Review on: solubility enhancement of poorly water soluble drug. *Indo Am. J. Pharm. Res.*, **4**: 5530-5541.
- Greco K and Bogner R (2012). Solution-mediated phase transformation: Significance during dissolution and implications for bioavailability. *J. Pharm. Sci.*, **101**: 2996-3018.

- Hickey MB, Peterson ML, Scoppettuolo LA, Morrisette SL, Vetter A, Guzmán H, Remenar JF, Zhang Z, Tawa MD and Haley S (2007). Performance comparison of a co-crystal of carbamazepine with marketed product. *Eur. J. Pharm. Biopharm.*, **67**: 112-119.
- Jung MS, Kim JS, Kim MS, Alhalaweh A, Cho W, Hwang SJ and Velaga SP (2010). Bioavailability of indomethacin-saccharin cocrystals. *J. Pharm. Pharmacol.*, 62: 1560-1568.
- Kobayashi Y, Ito S, Itai S and Yamamoto K (2000). Physicochemical properties and bioavailability of carbamazepine polymorphs and dihydrate. *Int. J. Pharm.*, **193**: 137-146.
- McNamara DP, Childs SL, Giordano J, Iarriccio A, Cassidy J, Shet MS., Mannion R, O'Donnell E and Park A (2006). Use of a glutaric acid cocrystal to improve oral bioavailability of a low solubility API. *Pharm. Res.*, **23**: 1888-1897.
- Meyer MC, Straughn AB, Mhatre RM, Shah VP, Williams RL and Lesko LJ (1998). The relative bioavailability and *in vivo in vitro* correlations for four marketed carbamazepine tablets. *Pharm. Res.*, **15**: 1787-1791.
- Murphy D, Rodriguez-Cintrón F, Langevin B, Kelly R and Rodriguez-Hornedo N (2002). Solution-mediated phase transformation of anhydrous to dihydrate carbamazepine and the effect of lattice disorder. *Intl. J. Pharm.*, **246**: 121-134.
- Raghavan S, Schuessel K, Davis A and Hadgraft J (2003). Formation and stabilisation of triclosan colloidal suspensions using supersaturated systems. *Intl. J. Pharm.*, **261**: 153-158.
- Smith AJ, Kavuru P, Wojtas L, Zaworotko MJ and Shytle RD(2011). Cocrystals of quercetin with improved solubility and oral bioavailability. *Mol. Pharm.*, **8**: 1867-1876.
- Stanton MK and Bak A (2008). Physicochemical properties of pharmaceutical co-crystals: A case study of ten AMG 517 co-crystals. *Cryst. Growth Des.*, **8**: 3856-3862.
- Sun CC (2013). Cocrystallization for successful drug delivery. Expert Opin. Drug Deliv., **10**: 201-213.
- Ullah M, Hussain I and Sun CC (2015a). The development of carbamazepine-succinic acid cocrystal tablet formulations with improved in vitro and in vivo performance. *Drug Dev Ind. Pharm.*, pp.1-8.
- Ullah M, Ullah H, Murtaza G, Mahmood Q and Hussain I (2015b). Evaluation of Influence of Various Polymers on Dissolution and Phase Behavior of Carbamazepine-Succinic Acid Cocrystal in Matrix Tablets. *BioMed. Res. Intl.*, **2015**: 1-10.
- Variankaval N, Wenslow R, Murry J, Hartman R, Helmy R, Kwong E, Clas SD, Dalton C and Santos I (2006). Preparation and solid-state characterization of nonstoichiometric cocrystals of a phosphodiesterase-IV inhibitor and L-tartaric acid. *Cryst. Growth. Des.*, **6**: 690-700.

- Venczel MR., Szvoboda I, Podányi BM, Valente D, Menegotto J, Pintye-Hódi KR and Ujhelyi G (2012). Formulation Possibilities of a Weak Base with a Narrow Solubility Range. *Cryst. Growth Des.*, **12**: 1101-1110.
- Wang C, Tong Q, Hou X, Hu S, Fang J and SUN CC (2016). Enhancing bioavailability of dihydromyricetin through inhibiting precipitation of soluble cocrystals by a crystallization inhibitor. *Cryst Growth Des.*, **16**(9): 5030-5039.
- Weyna DR, Cheney ML, Shan N, Hanna M, Zaworotko MJ, Sava V, Song S and Sanchez-Ramos JR (2012). Improving solubility and pharmacokinetics of meloxicam via multiple-component crystal formation. *Mol. Pharm.*, **9**: 2094-2102.
- Zhang M, Li H, Lang B, O'Donnell K, Zhang H, Wang Z, Dong Y, Wu C and Williams RO (2012). Formulation and delivery of improved amorphous fenofibrate solid dispersions prepared by thin film freezing. *Eur. J. Pharm. Biopharm.*, **82**: 534-544.
- Zheng W, Jain A, Papoutsakis D, Dannenfelser RM, Panicucci R and Garad S (2012). Selection of oral bioavailability enhancing formulations during drug discovery. *Drug Dev. Ind. Pharm.*, **38**: 235-247.